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Abstract. For a wide variety of model calculations a hypothetical 3D microstructure is required
as input. Although experimental data are frequently used to this purpose, 3D microstructures
are difficult to measure experimentally. In order to circumvent these difficulties, a virtual mi-
crostructure generator to simulate a specific 3D material microstructure is proposed. Such a
virtual microstructure could serve as input for different types of models, would allow a faster
model prototyping, would help to explore the boundary conditions of models and reduces the
number of unnecessary experimental measurements. In the current paper, the method to gen-
erate and to control the grain size distribution as well as texture are discussed.

Introduction

Polycrystalline metallic solids are composed of a contiguous set of crystal grains. Such a set
and its properties constitute the microstructure and can be partially described using statistical
parameters like grain size, crystallographic orientation and misorientation distributions. To a
large extent the microstructure of a polycrystal determines its engineering behavior by control-
ling e.g. mechanical, corrosion and magnetic properties. In the last decades a large number of
models has been developed claiming to account for a variety of material responses and some
of these may benefit from calculations employing 3D (three dimensional) microstructures as an
input.

During the development of a microstructurally based material model a set of different input
parameters are required for validation and optimization. In order to avoid time-consuming
and sophisticated 3D measurements of microstructures a framework for virtual microstructure
generation is proposed here. A virtual microstructure is a model itself, capable of generating
a numerical representation of numerous microstructural features that are able to substitute
for experimental data when used as input to microstructural models. Virtual microstructures
are very handy to produce test case samples, which can be used for fast modeling prototyping
and microstructural design since they may cover a very large spectrum of microstructural state
variables even outside the range of practical implementation. Such capacity helps one to find
the boundary conditions and the crucial state variables in a model. It is important to state
that the aim is not to completely replace experiments but reduce their number and improve
their efficiency by predefining which samples are better suited for experimental validation.
Once validated and with the boundary conditions checked, it is also useful to look for optimum
microstructures when one wants to design a material.

In the past decades metallurgists and scientists have been looking at the microstructure
and defined a broad range of parameters to characterize them. However to create a virtual mi-
crostructure the opposite exercise has to be done, i.e. starting from a set of microstructural state
variables, conveniently expressed as statistical distribution functions, a 3D set of contiguous



grains needs to be created which represents the virtual microstructure. Because microstructures
are very complex objects some assumptions are required to simplify the framework. Therefore,
it is assumed here that the microstructure is fully characterized by a set of crystal orientations
of a single phase that are assembled in a contiguous volume, ignoring in-grain heterogeneities.
The input parameters of the microstructure generator can be specified as a set of distribution
functions and their relations like grain morphology, orientation and grain boundary character.
Additional features such as number of neighbors, triple junction angles or clustering of some
properties might be considered as well, but are ignored for the time being. The current paper
will report the results when the grain size and texture distribution functions are given as input.

Method

In the proposed framework, surfaces are the main representative objects. Each grain is repre-
sented by a set of surfaces forming a closed volume rather than a set of subvolumes in a grid
as e.g. voxels in a cubic grid space. This choice allows for a more precise description of grain
boundaries and associated properties (such as e.g. local GB curvature), and on the practical side
it also allows for a compact data description and thus a faster calculation. In the first version
of the model the boundaries are composed of flat surfaces, but in future these flat surfaces will
be converted to polynomial piecewise surfaces. If necessary, further post-processing conversion
to voxels or meshes can be carried out for the sake of compatibility with others model formats
such as e.g. finite elements and phase field modeling.

The grains are first created using the concept of Voronoi cells, which consist of a mathe-
matical concept where a space Rn is partitioned starting from a set of points p ∈ Rn. Each cell
is defined by a region in the space where all distances are closer to its central point p than the
central points from any other cell. Voronoi structures bear a one-to-one relation with Delaunay
triangulation [1]. Both concepts provide equivalent information but stored in different ways,
the so called duality property, that allows a straightforward bijective conversion between them.
Even though there are algorithms to directly calculate Voronoi cells, an indirect method that
calculates the Delaunay triangulation first and then converts it to Voronoi cells is used here.

The key point to generate a proper grain size distribution using Voronoi cells is to find a
proper set of central points that reproduces the user specified grain size distribution. The user
provides the grain size distribution function f(gs) as well as the lower and upper limits gs ∈
[a, b], thus defining the target distribution. If n points are randomly placed in a box of which the
size depends on the number of grains n and the average grain size of the target distribution, the
resultant distribution is the so-called Poisson-Voronoi which exhibits a lognormal distribution
with a variance of 0.424 [2]. Even though this distribution might be useful in some specific
cases, in more general cases the target distribution will deviate from the lognormal one and
may exhibit a different variance or even a bimodal structure. In order to transform the initial set
of points in a valid one where the Voronoi cells follow the target distribution a Reverse Monte
Carlo (RMC) algorithm is used [3]. Both target and current distributions are discretized into
histograms with volume fractions pi in each bin and the error function described in Eq. 1 is
employed for convergence.

The orientation assignment starts once a suitable grain size distribution is found. The target
distribution is obtained from a discretized Orientation Distribution Function (ODF) in Euler
space. To the purpose of discretization the inverse of the Cumulative Distribution Function
(CDF) is sampled by a uniform distribution, very much similar to the method proposed by
Toth and Van Houtte [4]. The CDF is constructed by numerical integration of the ODF along
its three angles, as describe in Eq. 3 where vi,j,k is the volume fraction in a discrete position of
the Euler space.



errorGS =
N∑
i=1

(pi − ptargeti )2. (1)

errorODF =
N∑
i=1

M∑
j=1

L∑
k=1

(vi,j,k − vtargeti,j,k )2. (2)

CDF(N,M,L) =
N∑
i=1

M∑
j=1

L∑
k=1

vi,j,k sin Φ∆φ1∆Φ∆φ2. (3)

Even though the method described above allows a fair ODF sampling , each sampled orien-
tation has implicitly the same weight or volume fraction. It means that when the orientations
are associated to the grains and the grain set has a non-uniform volume fraction distribution,
the resultant ODF is very much likely to be distorted. On the other hand there are an infinite
set of orientations that when associated with a certain set of grains will result in equivalent
ODFs. This shows how ill-posed the problem might be i.e. in its present form it is not guar-
anteed that a unique solution can be found. In order to specify a unique solution the missing
state variables like misorientation or grain boundary character distributions should be included.
For the moment the model does not include any of those parameters, therefore RMC will be
applied to enforce a possible association between orientations and volume fractions using the
error function described in Eq. 2.

Example

One example displaying the current capabilities of the virtual microstructure generator will
be given. A set of 1000 grains was generated and fitted into a bimodal spectrum composed
by overlapping two normal distributions. The first distribution, that was obtained by placing
points randomly, is shown in Fig. 1(a). As expected, it resembles a lognormal distribution with
a variance of approximately 0.43 that is typical for Poisson-Voronoi statistics. Finally, after the
RMC iterations, the desired distribution is obtained as one can observe in Fig. 1(b).

Once the grain set is defined, the following step is to create the texture by assigning orien-
tations to each grain. Given a target ODF, orientations were sampled and assigned randomly
to the grains, see Fig. 2(b). As expected, the distribution does not match with the target dis-
tribution, Fig. 2(a), because of the non-uniform grain size. After the RMC iterations a valid
configuration was achieved as shown on Fig. 2(c).
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Fig. 1: Generation of 1000 grains that correspond to the target distribution composed by two
overlapping normal distributions (µ1 = 1, σ1 = 0.5, µ2 = 5, σ2 = 0.7). (a) The initial
distribution after random positioning of points. (b) Final distribution after RMC iterations. (c)
3D section of the resultant grain set.
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Fig. 2: Texture reconstruction. (a) Target ODF with typical α− γ fibers obtained experimen-
tally. (b) Initial ODF after random assignment of sampled orientations to grains. (c) Final ODF
after RMC iterations. (d) Overlay of the previous three states.
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